

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Approved for public release; further dissemination unlimited

UCRL-ID-148554-REV-1

The LEOS Interpolation
Package

F. N. Fritsch

March 12, 2003

This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the University
of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

The LEOS Interpolation Package

Third Edition

Frederick N. Fritsch

Physics and Advanced Technology Directorate

H Division

12 March 2003

(This page deliberately left blank.)

 - ii -

The LEOS Interpolation Package

 Contents

Contents ... iii
Introduction..1
1. Bivariate functional forms ...1

1.1. Variable transformation ..1
1.2. The bilinear form ..1
1.3. The bilogarithmic form...2
1.4. The bicubic form...2
1.5. The bicubic Hermite form...2
1.6. The biquadratic form ..3

2. Univariate functional forms ...3
2.1. The need for compatible univariate interpolation...3
2.2. Linear interpolation ..3
2.3. Cubic interpolation ...4
2.4. Cubic Hermite interpolation ...4

3. Coefficient setup ..4
3.1. Bilinear..4
3.2. Bicubic ..5
3.3. Modification for two-phase data...7
3.4. Bicubic Hermite..8
3.5. Monotone bicubic Hermite (bimond) ...10
3.6. Biquadratic..11
3.7. Linear ..11
3.8. Cubic...12
3.9. Cubic Hermite...12
3.10. Monotone cubic Hermite (monder) ..13

4. Forward evaluation ..13
4.1. Table lookup ...13
4.2. Evaluation ...14
4.3. Extrapolation...14

5. Inverse evaluation ..15
5.1. Table lookup ...15
5.2. Direct inversion (bilinear)...16
5.3. Inverse iteration (bicubic)...16
5.4. Inverse iteration (biherm) ...16
5.5. Inverse iteration (biquadratic)...16
5.6. Extrapolation...16

6. The Tcalc option ..17
6.1. The Tcalc mesh...17
6.2. Tcalc setup ..17
6.3. Tcalc evaluation..18
6.4. Tcalc extrapolation ...18

7. Package organization ...18
7.1. The interpolation utilities..18
7.2. Interp1D..19
7.3. Interp2D..20

- iii -

8. Possible enhancements ..22
8.1. Lookup improvements ..22
8.2. Newton iteration ...22

References..23
Acknowledgements..23

 - iv -

The LEOS Interpolation Package

Introduction
This report describes the interpolation package in the Livermore Equation of State
(LEOS) system. It is an updated and expanded version of report [1], which described the
status of the package as of May 1998, and of [2], which described its status as of the
August 2001 release of the LEOS access library, and of [3], which described its status as
of library version 7.02, released April 2002. This corresponds to library version 7.11,
released March 2003. The main change since [3] has been the addition of the monotone
bicubic Hermite (bimond) interpolation method.

Throughout this report we assume that data has been given for some function f(ρ,T) on a
rectangular mesh ρ = ρ0, ρ1, ..., ρnr–1; T = T0, T1, ..., Tnt–1. Subscripting is from zero
to be consistent with the C code. (Although we use this notation throughout, there is
nothing in the package that assumes that the independent variables are actually density
and temperature.)

The data values are fij = f(ρj,Ti). (This subscript order is historical and reflects the nota-
tion used in the program.) There are nr×nt data values, (nr–1)×(nt–1) mesh rectangles
(boxes). In the C code, the data array is one-dimensional, with data[i*(nr-1)+j] =
f(ρj,Ti). In the case of the few univariate functions supported by LEOS, the T variable is
omitted, as well as the associated index on the data array: data[j] = f(ρj).

1. Bivariate functional forms
1.1. Variable transformation

For the standard bivariate forms, the following variable transformations are used to
simplify formulas and enhance numerical stability:

 x = x(ρ) = (ρ – ρj) / ∆ρj, ∆ρj = ρj+1 – ρj; (1.1)

 y = y(T) = (T – Ti) / ∆Ti, ∆Ti = Ti+1 – Ti. (1.2)

Note that these transformations have the property

 x(ρj)=0, x(ρj+1)=1, y(Ti)=0, y(Ti+1)=1, (1.3)

so that the rectangle Rij=[ρj,ρj+1]×[Ti,Ti+1] is mapped onto the unit square
U=[0,1]×[0,1].

These variable transformations are not performed in the biquadratic case (see Section
1.6), in order to produce an interpolant as close as possible to its equivalent in the old
EOS4 package [7].

1.2. The bilinear form
The bilinear functional form on the mesh rectangle Rij is:

 f(ρ,T) = l(x,y) = a0 + a1x + a2y + a3xy. (1.4)

- 1 -

1. Bivariate functional forms

1.3. The bilogarithmic form
The bilogarithmic functional form (abbreviated “bilog”) is

 log f(log ρ, log T) = l(x,y) = a0 + a1x + a2y + a3xy. (1.4bl)

This was recently introduced as an option, primarily for opacity data. If this option is
chosen, logarithms are taken of all variables before setup, and the bilinear interpolation
coefficients are computed for the resulting transformed data. Since the user will be
supplying (ρ,T) and expecting f back, the necessary transformations are done before and
after the evaluation is performed.

1.4. The bicubic form
The LEOS bicubic functional form on the mesh rectangle Rij is:

 f(ρ,T) = c(x,y) = a0 + a1x + a2y + a3xy +
 a4x2 + a5x2y + a6x3 + a7x3y + (1.5)
 a8y2 + a9xy2 + a10y3 + a11xy3,

where the four highest-order terms (x2y2, x3y2, x2y3, x3y3) have been omitted from the
general bicubic polynomial to reduce storage space and evaluation time. Because the
first four terms in (1.5) are the same as in (1.4), we note that a bilinear function can be
viewed as a bicubic with its last eight coefficients equal to zero.

1.5. The bicubic Hermite form
The bicubic Hermite functional form (abbreviated “biherm”) on the mesh rectangle

Rij is:
 f(ρ,T) = b(x,y) =
 a0 h0(x)h0(y) + a1 h1(x)h0(y) + a2 h2(x)h0(y) + a3 h3(x)h0(y) +
 a4 h0(x)h1(y) + a5 h1(x)h1(y) + a6 h2(x)h1(y) + a7 h3(x)h1(y) +
 a8 h0(x)h2(y) + a9 h1(x)h2(y) + a10h2(x)h2(y) + a11h3(x)h2(y) +

 a12h0(x)h3(y) + a13h1(x)h3(y) + a14h2(x)h3(y) + a15h3(x)h3(y) . (1.6)

For improved numerical stability, we have performed a change of basis on the bicubic
form. Note that this is not equivalent to (1.5), because it contains the full 16 terms
required for a general bicubic function. Note also that a bilinear function is not a special
case.

The (univariate) cubic Hermite basis functions that appear in (1.6) are defined by
relations:

 h0(0) = 1, h0(1) = 0, h0´(0) = 0, h0´(1) = 0; (1.7a)
 h1(0) = 0, h1(1) = 1, h1´(0) = 0, h1´(1) = 0; (1.7b)
 h2(0) = 0, h2(1) = 0, h2´(0) = 1, h2´(1) = 0; (1.7c)
 h3(0) = 0, h3(1) = 0, h3´(0) = 0, h3´(1) = 1. (1.7d)

These lead to the following formulas for the basis functions:

 - 2 -

The LEOS Interpolation Package

 h0(t) = 1 – 3 t2 + 2 t3 = h1(1–t) = u2 (u + 3 t) ; (1.8a)
 h1(t) = 3 t2 – 2 t3 = t2 (t + 3 u) ; (1.8b)
 h2(t) = t – 2 t2 +t3 = –h3(1–t) = u2 t ; (1.8c)
 h3(t) = – t2 + t3 = –t2 u , (1.8d)
where we have set u = 1 – t .

1.6. The biquadratic form
The biquadratic functional form on the mesh rectangle Rij is:

 f(ρ,T) = q(ρ,T) = a0 + a1ρ + a2T + a3ρ2 + a4T2 + a5ρT +
 a6ρ2T + a7ρT2 + a8ρ2T2. (1.9)

Recall that there is no transformation to the normalized variables (x,y) in this case.

The biquadratic form is not recommended as a general bivariate interpolator. It is
included in the LEOS interpolation package only as a means to provide an interpolant to
the old EOP data that is consistent with EOS4 [7].

2. Univariate functional forms

2.1. The need for compatible univariate interpolation
In cases where the univariate “cold curves” are provided by LEOS, it is expected that

 Ft = Fc + Fe + Fi , (2.1)

where the second letters stand for total (t), cold (c), electronic (e) and ionic (i). Fc is uni-
variate (a function of ρ only), and the others are bivariate. (Here F = E or P.) The
univariate interpolant needs to be compatible with its bivariate interpolant of the same
type (bilinear, bicubic, or biherm), in the sense that if the data for these four functions
satisfy (2.1), then so will the interpolants (to as close to machine precision as possible).

The univariate interpolator in the 1998 version was a cubic spline, which is not
compatible with either the bilinear or bicubic form. The current package contains
compatible linear, cubic, and cubic Hermite interpolators. Since the EOP data is
available only for Ft, there is no univariate quadratic interpolator.

2.2. Linear interpolation
The linear functional form on the mesh interval [ρj,ρj+1] is:

 f(ρ) = l(x) = a0 + a1x, (2.2)

where, unlike in (1.1), we do not divide by the interval length:

 x = x(ρ) = ρ – ρj. (2.3)

- 3 -

3. Coefficient setup

2.3. Cubic interpolation
The cubic functional form on the mesh interval [ρj,ρj+1] is:

 f(ρ) = c(x) = a0 + a1x + a2x2 + a3x3, (2.4)

where x is as in (2.3).

2.4. Cubic Hermite interpolation
The cubic Hermite functional form on the mesh interval [ρj,ρj+1] is:

 f(ρ) = c(x) = a0 h0(x) + a1 h1(x)+ a2 h2(x) + a3 h3(x), (2.5)

where x is in (1.1), and the hj(x) are as in (1.8).

3. Coefficient setup
3.1. Bilinear

The interpolation conditions on mesh rectangle Rij are:

 fmn = f(ρn,Tm), m = i, i+1, n = j, j+1. (3.1)

There are four coefficients in (1.4) and four conditions in (3.1). Using (1.3), we can
write down the coefficients immediately from (3.1).

 fij = f(ρj,Ti) = l(0,0) = a0; (3.2a)

 fi,j+1 = f(ρj+1,Ti) = l(1,0) = a0 + a1; (3.2b)

 fi+1,j = f(ρj,Ti+1) = l(0,1) = a0 + a2; (3.2c)

 fi+1,j+1 = f(ρj+1,Ti+1) = l(1,1) = a0 + a1 + a2 + a3. (3.2d)

(3.2a) gives us a0 directly:

 a0 = fij. (3.3a)

From (3.2b) and (3.3a) we have

 a1 = fi,j+1 – fij. (3.3b)

Similarly, (3.2c) and (3.3a) yield

 a2 = fi+1,j – fij. (3.3c)

Finally, (3.2d) gives us

 a3 = fi+1,j+1 – (a0 + a1 + a2). (3.3d)

We observe that, by construction, the bilinear form will be continuous across the box
boundaries. However, derivatives will have jump discontinuities there.

 - 4 -

The LEOS Interpolation Package

The interpolation coefficients are laid out in blocks of four in memory, with the
coefficients for mesh rectangle Rij starting at location (i*(nr-1)+j)*4 in the
coefficient array.

3.2. Bicubic
The same four interpolation conditions (3.1) apply to the bicubic form on mesh rec-

tangle Rij, but there are twelve coefficients in (1.5), so we must find eight additional
equations. If we had the values of the first partial derivatives of f at the data points, we
could supplement (3.1) with the eight derivative interpolation conditions:

 Dρfmn = ∂f(ρn,Tm)/∂ρ, m = i, i+1, n = j, j+1. (3.4a)

 DTfmn = ∂f(ρn,Tm)/∂T, m = i, i+1, n = j, j+1. (3.4b)

where Dρfmn is the ρ-derivative of f at the mn data point, and similarly for DTfmn. To
approximate the needed derivatives, we bring in information from neighboring points.

First observe that the four points (ρ,f(ρ,Ti))), ρ = ρj–1, ρj, ρj+1, ρj+2 determine a (uni-
variate) cubic in ρ. The present LEOS interpolator evaluates the derivative of this cubic
at ρj and ρj+1 to provide estimates of Dρfij and Dρfi,j+1 in (3.4a).

 Rij

 T = Ti
 ρj–1 ρj ρj+1 ρj+2

Requiring the derivatives of bicubic (1.5) to match these two values gives two additional
equations. Applying this procedure at T=Ti+1 gives two more. The other four equations
are determined similarly, by reversing the roles of T and ρ and using (3.4b) instead of
(3.4a).

Differentiating (1.5), and taking (1.1) and (1.2) into account, gives the partial derivatives
required for (3.4a) and (3.4b) in Rij:

∂f(ρ,T)/∂ρ = ∂c(x,y)/∂x / ∆ρj = [a1 + a3y + 2a4x + 2a5xy +
 3a6x2 + 3a7x2y + a9y2 + a11y3] / ∆ρj. (3.5a)

∂f(ρ,T)/∂T = ∂c(x,y)/∂y / ∆Ti = [a2 + a3x + a5x2 + a7x3 +
 2a8y + 2a9xy + 3a10y2 + 3a11xy2] / ∆Ti. (3.5b)

Note that properties (1.3) greatly simplify the matrix setup. In fact, unlike the procedure
used in the 1998 version of the package, the matrix is now constant, independent of the
data. It is set up for interpolation on the unit square with the first four rows of the matrix
containing the data interpolation conditions, f(rho[i],t[i]) = rhs[i]:

- 5 -

3. Coefficient setup

rho[0] = 0; t[0] = 0;
rho[1] = 0; t[1] = 1;
rho[2] = 1; t[2] = 0;
rho[3] = 1; t[3] = 1.

Note that the internal variables rho and t have replaced the x and y used in (1.5). Rows
4–7 contain ρ-derivative interpolation conditions, ∂f(rho[i],t[i])/∂ρ = rhs[i]:

rho[4] = 0; t[4] = 0;
rho[5] = 1; t[5] = 0;
rho[6] = 0; t[6] = 1;
rho[7] = 1; t[7] = 1.

Rows 8–11 contain T-derivative interpolation conditions, ∂f(rho[i],t[i])/∂T =
rhs[i]:

rho[8] = 0; t[8] = 0;
rho[9] = 0; t[9] = 1;
rho[10] = 1; t[10] = 0;
rho[11] = 1; t[11] = 1.

Note that the ∂f/∂ρ conditions are not in the same order as the others. This is because it
is natural to generate ρ-derivative estimates with T constant, T-derivative estimates with
ρ constant.

The resulting constant matrix is (in C notation):

 int imat[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, \
 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, \
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
 0, 1, 0, 0, 2, 0, 3, 0, 0, 0, 0, 0, \
 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, \
 0, 1, 0, 1, 2, 2, 3, 3, 0, 1, 0, 1, \
 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 3, 0, \
 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, \
 0, 0, 1, 1, 0, 1, 0, 1, 2, 2, 3, 3 }; (3.6)

The twelve coefficients in (1.5) are computed by solving a 12×12 linear system, with the
above matrix, using Gaussian elimination with partial pivoting. The procedure is to
perform an LU factorization of the matrix exactly once. Then all of the linear systems
solves reduce to a much more rapid back-substitution.

Because the necessary neighboring values needed to determine the univariate cubics are
not available in the boundary boxes, the setup routine drops to quadratic in the normal
direction, using only three-point estimates, in mesh rectangle Rij if i = 0 or nt–2 or if j

 - 6 -

The LEOS Interpolation Package

= 0 or nr–2. The boundary normal derivative is set to zero if this estimate has the
opposite sign from the data slope.

Function values are generally continuous across the interior box boundaries, because the
same function values and similar tangential derivative estimates are used on both sides of
the boundary between two boxes. Although the derivatives are much smoother than with
the bilinear form, they are not guaranteed to be continuous across box boundaries. In fact,
they are generally not continuous in the normal direction. The tangential derivatives are
nearly continuous, but this is not guaranteed. Because a different set of four data points is
used to estimate Dρfij in box (i,j–1) and box (i,j), ∂f/∂ρ may not even be continuous at ρ
= ρj along the mesh lines. (Similar remarks apply to ∂f/∂T.)

A version of the bicubic setup routine that uses the average of these two derivative esti-
mates has been tested. Although the overall quality of the derivatives was better, the
maximum derivative discontinuity was about the same as with the original method. This
is presumably due to the fact that we are not using a complete 16-term bicubic here. It
was decided not to change to these new estimates for such a marginal gain, because it
would have changed the results for all existing users of the bicubic form. (Different
derivative estimates lead to different interpolants.)

The interpolation coefficients are laid out in blocks of 12 in memory, with the coef-
ficients for mesh rectangle Rij starting at location (i*(nr-1)+j)*12 in the
coefficient array.

3.3. Modification for two-phase data
A modified version of the bicubic coefficient setup is used for two-phase data,

because the standard bicubic behaves very badly at the edges of the two-phase region,
where the data suddenly changes from being constant in ρ to changing very rapidly in
this variable. The procedure is to drop to bilinear (a special case of bicubic) inside or at
the boundary of the two-phase region.

The two-phase region is detected by the test (in C notation):

if ((j > 0 && \
 isflat(data[i *nr + j-1], data[i *nr + j])) ||
\
 isflat(data[i *nr + j], data[i *nr + j+1]) ||
\
 (j < nr-2 && \
 isflat(data[i *nr + j+1], data[i *nr + j+2])) ||
\
 (j > 0 && \
 isflat(data[(i+1)*nr + j-1], data[(i+1)*nr + j])) ||
\
 isflat(data[(i+1)*nr + j], data[(i+1)*nr + j+1]) ||
\

- 7 -

3. Coefficient setup

 (j < nr-2 && \
 isflat(data[(i+1)*nr + j+1], data[(i+1)*nr + j+2]))) {
 goto Make_it_bilinear;
} (3.7)

Here the logical function isflat is defined by

 isflat(a, b) = (|a–b| / max(|a|, |b|) ≤ FLATHRSH), (3.8)

where the “flatness threshold” FLATHRSH is a code parameter that is currently equal to
1.0e-7. To reduce the amount of extra testing, (3.7) is applied only in boxes Rij which
satisfy

 Ti ≤ 1.1 Tc , ρj < 1.5 ρ0 ,

where Tc is the “critical temperature” for the material and ρ0 is the “normal density”.

In order to reduce discontinuities between bicubic boxes and neighboring bilinear boxes,
the derivative estimates at neighboring points are modified to match the linear slopes.

Note that the above procedure is intended primarily to handle the characteristics of two-
phase pressure data. LEOS, however, currently applies this modified cubic setup to all of
the two-phase functions: P2p, E2p, and S2p.

3.4. Bicubic Hermite
The bicubic function b(x,y) on mesh box Rij, after the transformations (1.1) and (1.2),

is uniquely determined by the values of the four quantities
 b, ∂b/∂x, ∂b/∂y, ∂2b/∂x∂y
at the corners of the box. By construction, if the same values of these four quantities are
used in adjacent boxes, then these functions are continuous across the box boundaries.
This requires using continuous derivative estimates for all partial derivatives that appear
here.

A significant advantage of using the Hermite basis is that the interpolation coefficients
can be established directly from the interpolation conditions without the need to solve
any linear systems. For example, using the relations (1.7) in the functional form (1.6)
immediately yields the interpolation conditions (3.1) and the following coefficients:
 a0 = b(0,0) = f(ρj,Ti) = fij ; (3.9a)
 a1 = b(1,0) = f(ρj+1,Ti) = fi,j+1 ; (3.9b)
 a4 = b(0,1) = f(ρj,Ti+1) = fi+1,j ; (3.9c)
 a5 = b(1,1) = f(ρj+1,Ti+1) = fi+1,j+1 . (3.9d)

Note that these four coefficients are in the upper left 4x4 corner of the coefficient matrix
if equation (1.6) is rewritten in matrix notation:

 b(x,y) = h(y)T A h(x) , (3.10a)
where

 - 8 -

The LEOS Interpolation Package

 h(t) = (h0(t), h1(t), h2(t), h3(t)) T , (3.10b)
and

 A = (a0 a1 a2 a3)
 (a4 a5 a6 a7)
 (a8 a9 a10 a11)
 (a12 a13 a14 a15) . (3.10c)

Differentiating (3.10a) with respect to x yields:

 ∂b(x,y)/∂x = h(y)T A h´(x) , (3.11)

Again applying (1.7) to the derivative interpolation conditions (3.4a) shows that the
upper right corner of A contains the ∂b/∂x–values:
 a2 = ∂b(0,0)/∂x = ∆ρj ∂f(ρj,Ti)/∂ρ = ∆ρj Dρfij ; (3.12a)
 a3 = ∂b(1,0)/∂x = ∆ρj ∂f(ρj+1,Ti)/∂ρ = ∆ρj Dρfi,j+1 ; (3.12b)
 a6 = ∂b(0,1)/∂x = ∆ρj ∂f(ρj,Ti+1)/∂ρ = ∆ρj Dρfi+1,j ; (3.12c)
 a7 = ∂b(1,1)/∂x = ∆ρj ∂f(ρj+1,Ti+1)/∂ρ = ∆ρj Dρfi+1,j+1 . (3.12d)

Similarly,
 ∂b(x,y)/∂y = h´(y)T A h(x) , (3.13)

and (3.4b) indicates the lower left corner has the ∂b/∂y–values:
 a8 = ∂b(0,0)/∂y = ∆Ti ∂f(ρj,Ti)/∂T = ∆Ti DTfij ; (3.14a)
 a9 = ∂b(1,0)/∂y = ∆Ti ∂f(ρj+1,Ti)/∂T = ∆Ti DTfi,j+1 ; (3.14b)
 a12 = ∂b(0,1)/∂y = ∆Ti ∂f(ρj,Ti+1)/∂T = ∆Ti DTfi+1,j ; (3.14c)
 a13 = ∂b(1,1)/∂y = ∆Ti ∂f(ρj+1,Ti+1)/∂T = ∆Ti DTfi+1,j+1 . (3.14d)

As noted above, assuring continuity of first derivatives requires using continuous
derivative estimates for the first partial derivatives in (3.12) and (3.14). The derivative
estimates used by LEOS are the averages of the two four-point estimates discussed in
Section 3.2. In boundary boxes, a non-centered four-point estimate is used to retain cubic
precision. As with the standard cubic, this value will be set to zero of it is of the opposite
sign from the data slope at the boundary. The use of different derivative estimates means
that the bicubic Hermite interpolant to a given set of data does not satisfy exactly the
same defining equations as does the standard LEOS bicubic, but the result does have
continuous function and first partial derivatives.

The mixed partial derivatives (or “twists”) fill out the remainder of the coefficient matrix.
To see this, differentiate either (3.11) or (3.13) with respect to the other variable to
obtain:

 ∂2b(x,y)/∂x∂y = h´(y)T A h´(x) , (3.15)

and the remaining coefficients:

- 9 -

3. Coefficient setup

 a10 = ∂2b(0,0)/∂x∂y = ∆Ti ∆ρj ∂2f(ρj,Ti)/∂ρ∂T ; (3.16a)
 a11 = ∂2b(1,0)/∂x∂y = ∆Ti ∆ρj ∂2f(ρj+1,Ti)/∂ρ∂T ; (3.16b)
 a14 = ∂2b(0,1)/∂x∂y = ∆Ti ∆ρj ∂2f(ρj,Ti+1)/∂ρ∂T ; (3.16c)
 a15 = ∂2b(1,1)/∂x∂y = ∆Ti ∆ρj ∂2f(ρj+1,Ti+1)/∂ρ∂T . (3.16d)

Note that the twists could be set to zero without losing the continuity properties, thus
reducing the storage requirements to that of the bicubic form, in exchange for a reduction
in accuracy. We have not chosen this option for LEOS. Instead, the average of the three-
point difference formulas in the two coordinate directions applied to the current first
derivative estimates is used to estimate the twists in (3.16).

These formulas are used by the biherm setup routine and result in an interpolant that is
exact when interpolating data from a biquadratic function. While higher-order twist esti-
mates could be used to obtain complete bicubic precision, it has been decided that it is
not worth the extra effort for such a minimal effect on the interpolant.

The interpolation coefficients are laid out in blocks of 16 in memory, with the coef-
ficients for mesh rectangle Rij starting at location (i*(nr-1)+j)*16 in the
coefficient array.

Note that, since bilinear functions are not a subset of bicubic Hermite functions, there is
no convenient way to drop to bilinear inside the two-phase region. Consequently, there is
no modification of the biherm interpolant for two-phase data comparable to that
discussed in Section 3.3. Experience has shown that this interpolant does “ring” near the
phase transition boundary, but the behavior is confined to only boxes adjacent to this
boundary and is not nearly as pathological as the standard bicubic. To eliminate this
“ringing” altogether, use the bimond interpolant, described in the next section.

3.5. Monotone bicubic Hermite (bimond)
Monotonicity preservation is possible with the Hermite form of the bicubic interpo-

lant (see [4]–[6]). We have extended the algorithm described in [6] to handle piecewise
monotonic data (such as a typical pressure table) and included it in LEOS as the bimond
option.

The name “bimond” is historical. The original version of our univariate monotone piece-
wise cubic interpolation algorithm was implemented in subroutine MONDER (MONotone
DERivatives), a misnomer for the fact that it determined derivative values that resulted in
a monotone piecewise cubic Hermite interpolant. We have retained this name for the uni-
variate routine described in Section 3.10, below. Quite naturally, the bivariate version
became known as BIMOND. The incarnation included in the LEOS access library is
BIMOND5 (the fifth release).

In brief outline, the BIMOND5 algorithm proceeds as follows:
Step 1. Initialize two arrays that characterize the monotonicity properties of the data.

(In each segment where the data have a common monotonicity sense, the

 - 10 -

The LEOS Interpolation Package

interpolant will preserve that monotonicity, except perhaps in boxes adjacent to
a switch in data monotonicity).

Step 2. Compute initial values for the first partial derivatives ∂b/∂x and ∂b/∂y that
satisfy a sufficient condition for monotonicity along the mesh lines. This is done
by first initializing these values as described above for the biherm option, and
then screening them, possibly reducing derivative magnitudes to satisfy the
condition.

Step 3. Construct intervals of acceptable values, containing zero, for the twists
∂2b/∂x∂y. This step may require further reduction in magnitude of first partial
derivatives.

Step 4. Compute values for the twists, as described above for the biherm option, and
map them into the intervals determined in Step 3.

The primary complication beyond BIMOND4 [6] occurs in detecting boundaries of mono-
tonicity regions and treating derivative values in adjacent boxes appropriately.

Once the interpolation coefficients have been determined via the BIMOND5 algorithm,
the resulting function is evaluated and/or inverted in exactly the same way as an ordinary
biherm interpolant. Only the coefficient setup is different.

3.6. Biquadratic
For compatibility with the past, the coefficient calculation algorithm used is a C

translation of the one in EOS4 [7]. (Further details will not be given here.)

The interpolation coefficients are laid out in blocks of nine in memory, with the
coefficients for mesh rectangle Rij starting at location (i*(nr-1)+j)*9 in the
coefficient array.

3.7. Linear
A univariate linear function is uniquely determined by its values at two distinct

points. The linear interpolant on the mesh interval [ρj,ρj+1] is thus determined by

 fk = f(ρk), k = j, j+1. (3.17)

Using (2.2) and (2.3), we can write conditions for the coefficients:

 fj = f(ρj) = l(0) = a0; (3.18a)

 fj+1 = f(ρj+1) = l(ρj+1–ρj) = a0 + a1(ρj+1–ρj). (3.18b)

 (3.18a) gives us a0 directly:

 a0 = fj. (3.19a)

From (3.18b) and (3.19a) we have

 a1 = (fj+1 – fj) / (ρj+1–ρj). (3.19b)

- 11 -

3. Coefficient setup

3.8. Cubic
A univariate cubic function is uniquely determined by the values of the function and

its first derivative at two distinct points. The cubic interpolant on the mesh interval
[ρj,ρj+1] is thus determined by (3.17) and

 dk = f´(ρk), k = j, j+1. (3.20)

Differentiating (2.4) gives

 f´(ρ) = c´(x) = a1 + 2a2x + 3a3x2 , (3.21)

so that we have the four conditions:

 fj = f(ρj) = c(0) = a0; (3.22a)

 dj = f´(ρj) = c´(0) = a1; (3.22b)

 fj+1 = f(ρj+1) = c(ρj+1–ρj) = a0 + a1(ρj+1–ρj) + a2(ρj+1–ρj)2 +

 a3(ρj+1–ρj)3; (3.22c)

 dj+1 = f´(ρj+1) = c´(ρj+1–ρj) = a1 + 2a2(ρj+1–ρj) + 3a3(ρj+1–ρj)2. (3.22d)

(3.22a) and (3.22b) give us a0 and a1 directly:

 a0 = fj; (3.23a)

 a1 = dj. (3.23b)

Substituting these into (3.22c) and (3.22d) yields a pair of equations to be solved for the
remaining two coefficients. From these we obtain:

 a2 = –(2∆j + ∆j+1) ; (3.23c)

 a3 = (∆j + ∆j+1) / (ρj+1–ρj) , (3.23d)

where
 ∆k = (dk – m) / (ρj+1–ρj), k = j, j+1 ,

and m is the data slope, m = (fj+1 – fj) / (ρj+1–ρj) .

If we use the same derivative estimation scheme to produce dj and dj+1 as is used for
Dρfmn in the bicubic setup, we obtain a univariate cubic interpolant that is compatible
with the bivariate bicubic, in the sense discussed in Section 2.1, above.

3.9. Cubic Hermite
Differentiating (2.5) and using the defining characteristics of the cubic Hermite basis

functions (1.7) yields the four formulas:
 a0 = c(0) = f(ρj) = fj ; (3.24a)
 a1 = c´(0) = ∆ρj f´(ρj) = ∆ρj dj ; (3.24b)
 a2 = c(1) = f(ρj+1) = fj+1 ; (3.24c)
 a3 = c´(1) = ∆ρj f´(ρj+1) = ∆ρj dj+1 , (3.24d)

 - 12 -

The LEOS Interpolation Package

These immediately give us the fact that the cubic Hermite function (2.5) satisfies the con-
ditions (3.17) and (3.20) that are necessary and sufficient to uniquely define a cubic
function on [ρj, ρj+1].

If we use the same derivative estimation scheme to produce dj and dj+1 as is used for
Dρfmn in the bicubic Hermite setup, then we obtain a univariate cubic Hermite
interpolant that is compatible with its bivariate counterpart, in the sense discussed in
Section 2.1, above.

3.10. Monotone cubic Hermite (monder)
In order to provide a univariate interpolant that is compatible with bimond, in the

sense discussed in Section 2.1, we have included an algorithm that uses essentially the
procedure of Step 2 of BIMOND5 (see Section 3.5, above) to compute a piecewise
monotonic cubic Hermite interpolant. Strictly speaking, monder will be compatible with
the bimond interpolant only of no Step 3 first derivative modifications were required
along the lowest isotherm.

4. Forward evaluation
Once we have the array of coefficients ak for the desired interpolant to a given set of
data, we are in position to evaluate the interpolant at any number of points.

4.1. Table lookup
With any functional form, a nontrivial part of the evaluation for a given (ρ,T) is

determining box indices i and j such that Ti ≤ T < Ti+1 and ρj ≤ ρ < ρj+1. The two
variables are searched independently. The LEOS interpolation package uses a binary
search with guess. The index found at one point is saved and used as a guess at the
interval index for the next point. (The index for the first point is initialized to zero.) If
the defining conditions are already satisfied by the saved index, we are done. If not, the
next interval in the direction of the input value is examined. If that test also fails, then a
binary search is performed on the remaining part of the data.

For example, let J be the saved ρ-index. If ρJ–1 ≤ ρ < ρJ, the test ρJ ≤ ρ will fail. From
the direction of the failure, the code will then test for ρJ–1 ≤ ρ. This succeeds in this
case, and the new ρ-index is j=J–1. If ρ < ρJ–1, however, a binary search will then be
performed in [ρ0,ρJ–1].
 ρ

 ρJ–1 ρJ ρJ+1

In order to provide thread-safety, the function leos_lookup that implements the
lookup procedure for a single variable saves no state between calls. It does proceed as
indicated, but starts anew for each array it is asked to look up. It returns an array of

- 13 -

4. Forward evaluation

indices, which are then passed on to the appropriate evaluation routine for a most
efficient computation.

4.2. Evaluation
Once the proper mesh rectangle has been located, the variables are transformed

according to (1.1) and (1.2) (except for biquadratic), a pointer is set to the appropriate
location in the coefficient array, and the appropriate equation is evaluated. If derivatives
are requested, the appropriate derivative formulas are also evaluated, and the values are
returned to the calling program.

In the bicubic Hermite case, formula (3.10a) can be associated either from the left or
right, for two possible nested four-element summations. In one case linear combinations
of the x-basis functions are formed, and the results are used to form linear combinations
of the y-basis functions. The reverse is the case if the other association is chosen. After
some experimentation, different associations have been used in the evaluator, depending
on the evaluation history, in an attempt to minimize evaluation time. The result is that a
biherm evaluation is only 20 to 40 percent slower than a standard bicubic one (depending
on whether derivatives are evaluated).

For bicubic Hermite derivative evaluation, formula (3.11) or (3.13) is used. To provide
the necessary values, the Hermite basis function evaluator has an option to return h´ as
well as h. The relevant formulas are obtained by differentiating (1.8), namely:

 h0´(t) = –6 t + 6 t2 = –h1´(1–t) = –6tu ; (4.1a)
 h1´(t) = 6 t – 6 t2 = 6tu ; (4.1b)
 h3´(t) = 1 – 4 t + 3 t2 = h4´(1–t) = u (u – 2 t) ; (4.1c)
 h4´(t) = –2 t + 3 t2 = t (t – 2 u) . (4.1d)

Note that, given these values, one could use (3.15) to evaluate the twist, but this is not a
current LEOS option.

4.3. Extrapolation
The current LEOS evaluators allow two extrapolation options, controlled by

argument extr_flag.
The only option allowed prior to release 7.02 was equivalent to extr_flag=0. In this
case, if (ρ,T) is outside the table (i.e., ρ < ρ0 or ρ > ρnr–1, T < T0 or T > Tnt–1), then the
value at the nearest boundary point is returned. (That is, no extrapolation is performed.)
If derivatives are requested, zero is returned to match the constant behavior of the
extrapolant.

On the other hand, if extr_flag=1 and (ρ,T) is outside the table, the value of the
function and derivative at the nearest edge point are computed. The linear function
determined by these two values is evaluated at (ρ,T) for the returned value. (This will be
linear in the out-of-range variable and the order requested in the other.) The edge

 - 14 -

The LEOS Interpolation Package

derivatives are returned if requested. If both values are out of range, then the bilinear
extrapolant determined by the function and derivative values at the nearest corner is used.

As an example, suppose ρj < ρ < ρj+1 but T < T0:

 T = T1

 R0j

 T = T0 (Edge of data region)
 ρj ρj+1
 • (ρ,T)

In this case, we will have scaled variable values 0<x<1, but y<0. If extr_flag=0, then
f(ρ,T0), the value at (x,0), will be returned. If extr_flag=1, then ∂f(ρ,T0)/∂ρ will also
be computed (even if not requested) and f(ρ,T0) + (T–T0) ∂f(ρ,T0)/∂ρ will be returned.
NOTE: There is no special test for negative input temperatures or densities in either case.

5. Inverse evaluation
Many applications use ρ and E as the fundamental variables. In order to use the LEOS
tables, it is necessary to do an inverse lookup. Given values (ρ,E) = (ρ*,E*), we need to
find a temperature T=T* such that

 E(ρ*,T*) = E*. (5.1)

5.1. Table lookup
The same lookup procedure described above is used to find j such that ρj ≤ ρ* < ρj+1.

Is then necessary to examine the values Ei = E(ρ*,Ti), i = 0, 1, ..., nt–1 to find an i such
that Ei ≤ E* < Ei+1. A sequential search might require nt evaluations of E to determine i.
To reduce code complexity, a simple binary search (without guess) is currently
employed. Caution: This assumes that E is monotonic in T; i.e., Ei < Ei+1, i = 0, ..., nt–2.

 T = Ti+1 E(ρ*,Ti+1)>E*
 T = T* E*
 Rij

 T = Ti E(ρ*,Ti)<E*
 ρj ρj+1
 ρ*

We observe that these evaluations are also made simpler by using the fact that T=Ti
implies that y=0, except in the biquadratic case.

- 15 -

5. Inverse evaluation

5.2. Direct inversion (bilinear)
Once the appropriate T-interval has been found, we need to solve equation (5.1) for

T=T*. In the bilinear case, this is quite simple. From (1.4) we have

 E(ρ*,T) = a0 + a1x* + a2y + a3x*y, (5.2)
where
 x* = (ρ* – ρj) / (ρj+1 – ρj).

Equation (5.2) can be solved directly for y,

 y = (E* – (a0 + a1x*)) / (a2 + a3x*), (5.3)

and the desired value (obtained by inverting (1.2)) is:

 T* = (Ti+1 – Ti) y + Ti. (5.4)

5.3. Inverse iteration (bicubic)
The bicubic case is much more complicated. In this case we have to solve a cubic

polynomial equation for y. The present code uses a hybrid secant/bisection algorithm to
solve this. Matters are simplified a bit by the fact that, due to the variable transformation
(1.2), we are solving for a root in the interval [0,1].

The iteration tolerance is currently set at 1.0e-7. (This was 1.0e-5 in an earlier version,
but that was deemed insufficient accuracy.) A typical call requires 5–7 iterations, but
both smaller and larger values have been observed. (An earlier version that used
bisection exclusively required 15 iterations per call.)

5.4. Inverse iteration (biherm)
The bicubic Hermite case is handled much like the standard bicubic case. The same

iteration procedure is used. The only difference is that the cubic being solved is
represented in Hermite form, rather than power form.

5.5. Inverse iteration (biquadratic)
The biquadratic case is intermediate in complication. In this case, a quadratic

equation has to be solved, once we determine the interval [Ti, Ti+1] containing the target
T*. For compatibility with the past, the algorithm used is a C translation of the one in
EOS4 [7], with some of the special case coding omitted.

5.6. Extrapolation
If the input ρ-value is out of range, the above-mentioned inversion is carried out

using the appropriate border strip. If the E-value is out of range, the algorithm returns the
associated boundary T-value, with zero T-derivative. (There is no linear extrapolation
option.)

 - 16 -

The LEOS Interpolation Package

6. The Tcalc option
Because the iterative solution of cubic equations is rather expensive, an inverse
evaluation is much more time-consuming than a direct evaluation in the bicubic case. In
order to get around this, LEOS provides a Tcalc alternative. This involves setting up a
(ρ,E) mesh and doing an inverse evaluation at each point in the mesh to produce a T(ρ,E)
table. This is done once at setup, and then only forward evaluations are done in this table
to produce the T-values required for evaluating other functions during the course of a
calculation.

6.1. The Tcalc mesh
Because of the shape of most energy functions, there are no T-values corresponding

to small energy values at large ρ. In order to produce a rectangular mesh for subsequent
forward evaluation, it is thus necessary to modify the above idealized procedure to
produce a T(ρ,ε) table, where ε = E – E0, and E0 = E0(ρ) = E(ρ,T0) is the lowest isotherm
of the energy table to be inverted.

The Tcalc setup routine in the interpolation package allows several options as to how this
(ρ,ε) mesh is set up. The mesh is derived from the (ρ,T) mesh for the energy table being
inverted. There are two parameters which control the grid points in the (ρ,ε) mesh. (The
word “input” below refers to the energy table mesh.)

mε is the number of ε-intervals per input T-interval. The mesh will always have ε0
= 0. Normally ε1 is chosen to be the value of E–E0 at the left end of the lowest
isotherm, E(ρ,Ti), i>0, for which E–E0 is positive. εnε is chosen to be the
smallest value of E–E0 on the highest isotherm, E(ρ,Tnt), where nε=mε·nt+1.
The remaining values will be uniformly logarithmically spaced between them.
(There is a special option mε=0 which will result in the choice εi = E(0,Ti)–
E(0,T0), omitting any values which are zero for i>0, so that nε≤nt. This option
allows one to mimic the spacing of the input T-mesh.)

mρ is the number of ρ-intervals per input ρ-interval. The Tcalc ρ–mesh will be a
refinement of the input ρ–mesh, generated by inserting mρ–1 new
logarithmically spaced values in each interval of the original mesh. The
resulting mesh will have nρ=mρ·(nr–1)+1, and mρ=1 gives the original ρ–mesh.

The current LEOS user-level Tcalc setup routine uses the values mε=1 and mρ=1.

6.2. Tcalc setup
Once a (ρ,ε) mesh has been set up as discussed above, the Tcalc setup routine then

does interpolation of the appropriate type in the bottom row of the input energy table to
compute E0(ρ) = E(ρ,T0) for each of the nρ values in the Tcalc ρ–mesh. It then cycles
over the ε-mesh, computes E=ε+E0(ρ) at each point, and calls the appropriate inverse
evaluation routine to compute the Tcalc table, T(ρ,ε). It then sets up coefficients for
interpolation in this table, based on the interpolation method used for the original E-table.

- 17 -

7. Package organization

All of the information needed for interpolation in the Tcalc table is contained in the mesh
and the interpolation coefficients, so the user never actually sees the T(ρ,ε) array.

For completeness, the user is allowed to use the Tcalc option for a bilinear energy table,
but this is really not a good idea, because the direct inversion of a bilinear function is
much faster. There is no biquadratic Tcalc option.

6.3. Tcalc evaluation
Because it is necessary to do a one-dimensional interpolation in the bottom row of the

original energy table to compute the E0(ρ) needed to convert a user’s E-value into the
associated ε-value for interpolation in the Tcalc table, there is a special evaluator for this
purpose. The resulting interpolation, while somewhat more expensive than a normal
bicubic or biherm evaluation, is much faster than an inverse bicubic or biherm
evaluation.

6.4. Tcalc extrapolation
The same extrapolation options described in Section 4.3 are also provided for the

Tcalc evaluator. If the ρ-value is out of range, the appropriate extrapolation is first
performed when computing E0(ρ). The resulting (ρ,ε)-values are then passed to the
appropriate direct evaluator, which performs any necessary additional extrapolation.

7. Package organization
The LEOS interpolation package is organized in three sub-packages. There are one- and
two-dimensional sub-packages, interp1D and interp2D, and a set of utility routines that
are used by both of these. The first two require a header file, such as LEOS_proto.h,
which defines the interpolation type parameters LEOS_BILINEAR, etc., and all require
the header file LEOS_Ftype.h, which defines the Fortran-compatible types used
throughout LEOS. In order to support the new biherm interpolator and new extrapolation
options introduced since [2], some routines have been added and some function names
changed.

7.1. The interpolation utilities
The LEOS interpolation utilities are contained in files leos_int_util.c,

leos_lookup.c, and leos_intrp_vers.c, with header file
LEOS_int_util.h. (leos_lookup is packaged separately, because it may have
uses independent of LEOS, as is leos_intrp_vers.) There is also a file
pchsubs.c, with header file LEOS_ PCH.h, which is used by the bimond option.
This contains C versions of routines from the REAL*8 version of the univariate PCHIP
package.

The contents of these files are as follows:

 - 18 -

The LEOS Interpolation Package

leos_int_util.c:
leos_dcopy: copy a double precision array.
leos_dswap: swap two double precision arrays.
leos_p2d: compute a quadratic polynomial and evaluate its derivative for

cubic setup routines.
leos_p3d: compute a cubic polynomial and evaluate its derivative for cubic

setup routines.
leos_cubic_derivs:

compute derivative estimates suitable for cubic Hermite interpola-
tion.

leos_hbasis: evaluate univariate Hermite basis functions.
leos_fun3c: compute a 3-point derivative approximation.
leos_mach: returns Real8 (double) floating point constants.
leos_fsign: routine to emulate the Fortran SIGN function.
leos_sign_test:

modified PCHIP8 sign-testing routine.

leos_lookup.c:
leos_lookup: look up an array in an ordered 1-D table.

leos_intrp_vers.c:
leos_intrp_vers: return the version number for the package.

pchsubs.c (C versions of PCHIC8 subsidiary routines):
pchcs8_: adjusts the values of derivatives in the vicinity of a switch in direc-

tion of data monotonicity for a "visually pleasing" curve.
pchsw8_: PCHCS8 switch excursion limiter.

7.2. Interp1D
The one-dimensional interpolation routines are contained in the interp1D sub-

package. The source files are leos_int1D_setup.c and leos_int1D_eval.c,
with header file LEOS_int1D.h.

The contents of these files are as follows:

leos_int1D_setup.c (coefficient set-up functions):
leos_setup_linear: set coefficient arrays for linear interpolation.
leos_setup_cubic: set coefficient arrays for cubic interpolation.
leos_setup_hermit: set coefficient arrays for cubic Hermite interpolation.
leos_setup_monder: set coefficient arrays for monotone cubic Hermite

(monder) interpolation.

leos_int1D_eval.c (direct interpolation functions):

- 19 -

7. Package organization

leos_evalu_univar: evaluate interpolant at an array of points. This function
gets the index array from leos_lookup and then calls
the appropriate one of the following functions.

leos_evalu_linear: implements linear interpolation option.
leos_evalu_cubic: implements cubic interpolation option.
leos_evalu_hermit: implements cubic Hermite interpolation option.

7.3. Interp2D
Most of the interpolation package is contained in the interp2D sub-package. The

setup routines and the direct and inverse evaluation routines are in files leos_int2D_
setup.c, leos_int2D_eval.c, and leos_int2D_inv.c, with header file
LEOS_int2D.h. For packaging purposes, the bimond option is implemented in
separate files leos_setup_bimond.c and pbhpm.c, which require the new header
file LEOS_ PBH.h in addition to LEOS_int2D.h.

The contents of these files are as follows:

leos_int2D_setup.c (coefficient set-up functions):
leos_setup_bilinear: set coefficient arrays for bilinear interpolation.
leos_setup_biquad: set coefficient arrays for biquadratic interpolation.
leos_setup_bicubic: set coefficient arrays for bicubic interpolation.
leos_setup_bicubic2p: set coefficient arrays for bicubic interpolation, with

modifications for two-phase data.
leos_bicubic_matrix: set up and factor interpolation matrix (3.6) for leos_

setup_bicubic or leos_setup_bicubic2p.
leos_setup_biherm: set coefficient arrays for biherm interpolation.

The following two general-purpose utility functions are used only by the bicubic setup
routines, so are included in leos_int2D_setup.c:

leos_factor: compute the LU factorization of a matrix.
leos_solve: solve a system, given its LU factorization.

leos_setup_bimond.c (coefficient set-up for bimond):
leos_setup_bimond: set coefficient arrays for bimond interpolation. This

merely allocates temporary storage and calls PBHpm.

pbhpm.c (BIMOND5 set-up algorithm):
PBHpm: main control routine for the BIMOND5 algorithm (see Section 3.5).

This is the result of converting Fortran subroutine PBHPM (Piece-
wise Bicubic Hermite interpolation which preserves Piecewise
Monotonicity) and its 14 subsidiaries to C and significantly
cleaning up the result.

pbhinit_: initialize global variables for PBHpm.

 - 20 -

The LEOS Interpolation Package

pbhm1a_: implements Step1 of the BIMOND5 algorithm.
pbhm2b_: implements Step2 of the BIMOND5 algorithm.
pbhm3a_: implements Step3 of the BIMOND5 algorithm.
pbhm4a_: implements Step4 of the BIMOND5 algorithm.
(Lower-level subsidiaries are not included in this list. Refer to the comments at the
beginning of PBHpm if you really want to know the code structure.)

leos_int2D_eval.c (direct evaluation functions):
leos_evalu_bivar: evaluate interpolant at an array of (T,ρ) points. This

function gets the index arrays from leos_lookup
and then calls the appropriate one of the following
functions.

leos_evalu_bilinear: implements the bilinear interpolation option.
leos_evalu_biquad: implements the biquadratic interpolation option.
leos_evalu_bicubic: implements the bicubic interpolation option.
leos_evalu_biherm: implements the bicubic Hermite interpolation option.

leos_int2D_inv.c (inverse evaluation functions):
leos_inverse_vals: find T's corresponding to array of (ρ,E). This function

gets the ρ-index array from leos_lookup and then
calls the appropriate one of the following functions.

leos_inv_bilinear: implements bilinear inverse interpolation.
leos_inv_biquad: implements biquadratic inverse interpolation.
leos_inv_bicubic: implements inverse interpolation for the “standard”

bicubic form.
leos_inv_biherm: implements inverse interpolation for the bicubic

Hermite form.

The routines that handle the Tcalc option are packaged separately. They are contained in
file leos_int2D_tcalc.c, with header file LEOS_tcalc.h.

The contents of this file are as follows:
leos_setup_tcalc: set up (ε,ρ) mesh, compute T on this mesh, and return

coefficients for interpolating in this Tcalc table.
leos_evalu_tcalc: interpolate in a previously created Tcalc table.

- 21 -

8. Possible enhancements

8. Possible enhancements
8.1. Lookup improvements

Since the tabulation points are logarithmically spaced, it may be possible to further
speed up the lookup phase by introducing a hash table or other device. It will be
necessary to do this without incurring the expense of a logarithm or exponential call
during evaluation.

8.2. Newton iteration
Since derivative of a cubic is relatively inexpensive to evaluate, it might be possible

to further speed up the bicubic inverse iteration by changing from the secant method to a
safeguarded Newton iteration. Since the iteration is to be done on [0,1], it should be easy
to tell when we are heading out of the interval and take appropriate corrective action.

 - 22 -

The LEOS Interpolation Package

- 23 -

References
[1] Fritsch, Frederick N., The LEOS Bivariate Interpolation Package, Unpublished report

(10 June 1998).

[2] Fritsch, Frederick N., The LEOS Interpolation Package, Unpublished report (15
November 2001).

[3] Fritsch, Frederick N., The LEOS Interpolation Package, Second Edition, UCRL-ID-
148544 (May 21, 2002).

[4] Carlson, R.E., and F.N. Fritsch, “Monotone piecewise bicubic interpolation”, SIAM
J. Numer. Anal., Vol. 22, No. 2 (April 1985), pp.386–400.

[5] Carlson, R.E., and F.N. Fritsch, “An algorithm for monotone piecewise bicubic inter-
polation”, SIAM J. Numer. Anal., Vol. 26, No. 1 (February 1989), pp.230–238. [The
associated Fortran code, BIMOND3, was documented in UCID-21143 (August
1987).]

[6] Carlson, R.E., and F.N. Fritsch, “A bivariate interpolation algorithm for data which
are monotone in one variable”, SIAM J. Sci. Stat. Comput., Vol. 12, No. 4 (July
1991), pp.859–866. [The associated Fortran code, BIMOND4, was never formally
documented.]

[7] Chase, Lila, EOS4 User Manual, Internal Report UCIR-1436a, Rev. 33 (July 7,
1999).

Acknowledgements
I wish to thank David Young for supporting this project and for his patience with me

while I tried to “get it right”. Thanks are due also to Ellen Hill for helping integrate this
package into the LEOS access library and to several LEOS users for their suggestions.

This work was performed under the auspices of the U.S. Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No.
W-7405-Eng-48.

	DISCLAIMER
	Fritsch_LEOS_Interp_4.3
	The LEOS Interpolation Package
	Third Edition
	12 March 2003

	ContentsContentsiiiIntroduction11. Bivariate functional forms11.1. Variable transformation11.2. The bilinear form11.3. The bilogarithmic form21.4. The bicubic form21.5. The bicubic Hermite form21.6. The biquadratic form32. Univariate functional forms32.1
	Introduction
	1. Bivariate functional forms
	1.1. Variable transformation
	1.2. The bilinear form
	1.3. The bilogarithmic form
	1.4. The bicubic form
	1.5. The bicubic Hermite form
	1.6. The biquadratic form

	2. Univariate functional forms
	2.1. The need for compatible univariate interpolation
	2.2. Linear interpolation
	2.3. Cubic interpolation
	2.4. Cubic Hermite interpolation

	3. Coefficient setup
	3.1. Bilinear
	3.2. Bicubic
	3.3. Modification for two-phase data
	3.4. Bicubic Hermite
	3.5. Monotone bicubic Hermite (bimond)
	3.6. Biquadratic
	3.7. Linear
	3.8. Cubic
	3.9. Cubic Hermite
	3.10. Monotone cubic Hermite (monder)

	4. Forward evaluation
	4.1. Table lookup
	4.2. Evaluation
	4.3. Extrapolation

	5. Inverse evaluation
	5.1. Table lookup
	5.2. Direct inversion (bilinear)
	5.3. Inverse iteration (bicubic)
	5.4. Inverse iteration (biherm)
	5.5. Inverse iteration (biquadratic)
	5.6. Extrapolation

	6. The Tcalc option
	6.1. The Tcalc mesh
	6.2. Tcalc setup
	6.3. Tcalc evaluation
	6.4. Tcalc extrapolation

	7. Package organization
	7.1. The interpolation utilities
	7.2. Interp1D
	7.3. Interp2D

	8. Possible enhancements
	8.1. Lookup improvements
	8.2. Newton iteration

	References
	Acknowledgements

